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Abstract— Dynamic locomotion for legged robots is difficult
because the system dynamics are highly nonlinear and complex,
nominally underactuated and unstable, multi-input and multi-
output, as well as time-variant and hybrid. One usually faces the
choice between the intricate full-body dynamics which remains
computationally expensive and sometimes even intractable, and
the empirically simplified model which inevitably limits the
locomotion capability. In this paper, we explore the legged
robot dynamics from a different perspective. By decomposing
the robot into the body and the legs, with interaction forces
and moments connecting them, we enjoy a novel method called
Dynamic Model Decomposition that involves lower-dimensional
dynamics for each subsystem while their composition maintain-
ing the equivalence to the original full-order robot model. Based
on that, we further propose a corresponding model predictive
control framework via quadratic programming, which con-
siders linearly approximated body dynamics with constrained
leg reaction forces as inputs. The overall methodology was
successfully applied to a planar five-link biped robot. The
simulation results show that the robot is capable of body
reference tracking, push recovery, velocity tracking, and even
blind locomotion on fairly rough terrain. This suggests a
promising dynamic motion control scheme in the future.

I. INTRODUCTION

Dynamic locomotion for legged robots is extremely diffi-
cult. First, the robot movement only results from the contact
of the feet with the environment. These contact forces are
strongly restricted and thus need to be carefully planned to
achieve the desired motion. Second, the system dynamics
are highly nonlinear and complex, nominally underactuated
and unstable, multi-input and multi-output, as well as time-
variant and hybrid [1]. Trajectory optimization (TO) has
been proven an effective method yet the descriptiveness of
the dynamic model being used inevitably affects the overall
system performance.

At one end, in order to exploit every single detail of
the robot, the sophisticated full-body dynamics has been
utilized. This approach can indeed produce nice trajectories
[2], [3], [4], [5], [6]. However, due to the complexity of
high-dimensional model, these problems, usually formulated
as a nonlinear program (NLP), are still computationally
expensive, suffer initial guess and local minima issues, and
sometimes even end up to be intractable. At the other
end, there exist a variety of methods using the empirically
simplified models, which only focus on the most salient
aspect of the system dynamics, such as the linear inverted
pendulum model [7]. The assumptions of flat terrain and zero
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angular momentum, along with zero-moment point substitut-
ing contact forces as the stability criteria [8], greatly simplify
the dynamics so that model predictive control (MPC) can be
implemented efficiently [9], [10], [11]. Nevertheless, the for-
mulation requires variations on rough terrain [12]. Besides,
the robot is forced to mimic the oversimplified models, which
are not applicable to more complicated maneuvers.

Between these two extremes, another dynamic model
commonly used in TO is the centroidal dynamics [13],
which projects the robot dynamics at its center of mass
(CoM) position and only considers the external interaction as
input, provided that joint torque is always sufficient. A wide
range of dynamic motions have been successfully demon-
strated with this approach [14], [15], [16], [17], but real-
time implementation remains open due to the nonlinearity
of the angular momentum. By further assuming massless
legs and small body angular velocity which is valid for
certain quadrupeds, the centroidal dynamics can be linearly
simplified and applied in an MPC fashion [18], [19], [20].
However, ignoring leg dynamics has drastic effects if the
mass ratio of the body to the leg is not sufficiently high
[21], not to mention humanoid robots with heavy limbs.

Another interesting line of research is dynamic decompo-
sition. The idea is that, without sacrificing the model fidelity,
the problem becomes more tractable with several subsystems
of lower dimension. A 6-degree-of-freedom (DOF) manip-
ulator was decomposed into two 3-DOF submodels with
adaptive control successfully tested [22]. A wheel-leg robot
was decomposed into the torso and the wheel-legs for whole-
body control [23]. A quadrupedal robot was decomposed into
two biped subsystems so as to rapidly optimize locomotion
gaits even with NLP [24].

Inspired by the previous works, we explore the robot
dynamics from a different perspective. We consider robot
locomotion as the problem how to move the robot body from
point A to point B with the help of its mobility mechanism
interacting with the environment, e.g., propellers for drones,
wheels for vehicles, legs for legged robots. Therefore, we
think it is reasonable to decompose a legged robot into
the body and the legs, with interaction forces and moments
connecting them. The effect is that the problem becomes
more tractable since we can enjoy lower-dimensional dy-
namics for each subsystem while their composition is still
equivalent to the original full-order robot model. We call
this philosophy of interpreting dynamics Dynamic Model
Decomposition (DMD), which of course is not just applicable
to legged robots. For example, we can decompose a wheeled
inverted pendulum mobile robot into the body and the
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Fig. 1. Dynamic Model Decomposition. The (a) planar five-link biped robot
is decomposed into three components, (b) body, (c) swing leg sw, and (d)
stance leg st, with interaction forces and moments connecting them.

wheels; we can also separate the end effector from the
rest of a manipulator. Based on that, we further propose a
corresponding MPC framework. The goal is to regulate the
body motion via real-time TO, which can be formulated into
a favorable quadratic program (QP). Specifically, we consider
linearly approximated body dynamics subject to constrained
leg reaction forces as inputs. These forces need to respect
the leg dynamics, actuator capability, terrain condition, etc.

We will demonstrate the proposed methodology for the
locomotion of the planar five-link biped robot as an example.
The rest of this paper is organized as follows. Using DMD,
Section II decomposes the robot into three components, the
body, the stance leg, and the swing leg. Section III details the
locomotion MPC framework. To evaluate the performance,
different experiments, e.g., body reference tracking, dynamic
standing, push recovery, velocity tracking, blind locomotion
on rough terrain, were successfully tested and simulation
results are discussed in Section IV. Section V concludes the
paper with potential future directions.

II. ROBOT MODELING

The robot of interest is a planar five-link biped robot with
limp ankle, as shown in Fig. 1a. It has three main parts, the
body and two identical legs. Each leg has two links, femur
and shin. The parameters mi, Ji, ci, and ni, with the index
i = b, f, s, are the masses, moments of inertia, and CoM
locations of the body, femur, and shin, respectively. Their
corresponding values are listed in Table I, modeled after a
50th percentile adult male [25].

Define the vector of generalized coordinates

q :=
[
p>,

(
θ1
)>
,
(
θ2
)> ]>

=
[
x, z, φ, θ11, θ

1
2, θ

2
1, θ

2
2

]>
, (1)

where p := [x, z, φ]>, [x, z]> is the CoM position of the
body, φ is the body pitch angle, and θj := [θj1, θ

j
2]> describes

the configuration of leg j, with the index j = 1, 2. Note that
the variables related to leg j are denoted by a succeeding
j superscript. This j superscript may be replaced by st/sw
if the variables are specifically referring to the stance/swing
leg. The equations of motion of the robot take the form as

Mq̈ +C = T +
∑
st∈T

(
Jst
)>
dst, (2)

whereM(q) stands for the inertia matrix, the vector C(q, q̇)
captures the Coriolis, centrifugal, and gravitational forces,

TABLE I
ROBOT PARAMETERS

i body (b) femur (f ) shin (s)
mi [kg] 48 7.5 4.5

Ji [kg·m2] 9 0.47 0.19
ci [m] 0.4 0.2 0.2
ni [m] 0.4 0.3 0.3

the vector T := [0, 0, 0, τ11 , τ
1
2 , τ

2
1 , τ

2
2 ]> with τ j := [τ j1 , τ

j
2 ]>

gives the actuation torques, the stance foot Jocabian matrix
Jst(q) transforms ground reaction forces dst := [dstx , d

st
z ]>

into generalized forces for stance leg st, and T denotes the
set of stance legs. In addition, a kinematics constraint is
imposed to fix stance foot st on the ground before lift-off:

Jstq̈ + J̇stq̇ = 0. (3)

Finally, an impact takes place when the swing leg sw touches
the ground. By assuming an impulsive and perfectly plastic
collision, the touch-down impact model can be formulated
according to [26] as

M
(
q̇+ − q̇−

)
= (Jsw)

>
δdsw, (4a)[

Jsw Jst
]
q̇+ = 0, (4b)

where Jsw(q) is the swing foot Jacobian matrix, δdsw is the
touch-down impact force, and the superscript +/− denotes
the post/pre-impact generalized velocities.

Using DMD, the entire robot is further decomposed into
three components, the body, the swing leg, and the stance
leg, to be implemented in the proposed MPC framework.

A. Body Modeling

The robot body is modeled as a single rigid body subject
to the forces and moments created by the leg dynamics, as
shown in Fig. 1b. The body state vector is defined as

x :=
[
p>, ṗ>

]>
=
[
x, z, φ, ẋ, ż, φ̇

]>
. (5)

The net external wrench is defined as

u :=
[
Fx, Fz,My

]>
=

2∑
j=1

[
f jx, f

j
z ,m

j
y

]>
=:

2∑
j=1

νj , (6)

where f j := [f jx, f
j
z ]> and mj

y are the interaction force and
moment exerted at the hip location with leg j. Note that

mj
y = τ j1 (7)

essentially since only the hip actuators are responsible for
generating this pitch moment. The body dynamics can thus
be written as

mbẍ = Fx, (8a)
mbz̈ = Fz −mbg, (8b)

Jbφ̈ = My − Fxnb cosφ+ Fznb sinφ, (8c)

where g is the gravitational acceleration. For the sake of MPC
viability, the nonlinear rotational dynamics (8c) is desired
to be simplified. Different linear approximation approaches
have been proven effective for 3D single rigid body model



[18], [19], [20], [27]. For the planar case, assuming φ will
not change vigorously under well-controlled locomotion, we
can thus consider it as a constant, e.g., φ(t) = φ(tc) := φc
in (8c), for a short period over the MPC prediction horizon,
where φc is the body pitch angle at current time tc, which
will be updated for each MPC iteration and can presumably
be either estimated or directly measured. As a result, the
body dynamics (8) can be approximated as a continuous-
time linear time-invariant system as

ẋ = Ax+Bu+ g (9)

for a short time horizon, where the matrix B will depend on
φc, i.e., B(φc). (9) can be further discretized as

xk+1 = Adxk +Bduk + gd (10)

with a fixed discrete time interval of ∆t for MPC implemen-
tation later, where the index k ∈ N.

B. Swing Leg Modeling

The swing leg sw is modeled from the hip to the foot,
as shown in Fig. 1c. The goal is to control the swing foot
to follow some trajectory. Thus, the hip is considered as the
base. Define the vector of generalized coordinates

ssw :=
[
p>h , (θ

sw
s )
> ]>

=
[
xh, zh, θ

sw
h , θsw2

]>
, (11)

where ph := [xh, zh]> describes the hip position and θsws :=
[θswh , θsw2 ]> describes the leg configuration. The equations of
motion of the swing leg take the form as[

M11 M12

M>
12 M22

]
︸ ︷︷ ︸

Ms

[
p̈h
θ̈sws

]
︸ ︷︷ ︸

s̈sw

+

[
C1

C2

]
︸ ︷︷ ︸

Cs

=

[
−fsw
τ sw

]
, (12)

where Ms(s
sw) gives the inertia matrix and Cs(ssw, ṡsw)

captures the Coriolis, centrifugal, and gravitational forces.
(12) can be further decomposed as

J>s Λ12

(
Hp̈swf − J̇sθ̇sws

)
+M11p̈h +C1 = −fsw, (13a)

J>s Λ22

(
Hp̈swf − J̇sθ̇sws

)
+M>

12p̈h +C2 = τ sw, (13b)

in operational space, where

Λ12 =
(
JsM

−1
12 J

>
s

)−1
, Λ22 =

(
JsM

−1
22 J

>
s

)−1
, (13c)

are the operational space inertia matrices, pswf denotes the
swing foot position, and Js(θsws ) is the Jacobian matrix for
the swing foot, i.e., Jsθ̇sws = Hṗ

sw
f . Note that the variables

with respect to the hip frame are denoted by a preceding H
superscript while those without it are relative to the inertia
frame O.

C. Stance Leg Modeling

The stance leg st is modeled from the foot to the hip, as
shown in Fig. 1d. The goal is to find the relationship between
the actuation torques and the desired interaction force as well
as moment with the body. Therefore, the foot is treated as
the base. Define the vector of generalized coordinates

rst :=
[ (
pstf
)>
,
(
θstr
)> ]>

=
[
xstf , z

st
f , θ

st
a , θ

st
2

]>
, (14)

where pstf := [xstf , z
st
f ]> describes the foot position and

θstr := [θsta , θ
st
2 ]> describes the leg configuration. The

equations of motion of the stance leg take the form as

Mrr̈
st +Cr = Tr + J>d d

st + J>ν
(
−νst

)
, (15)

where Mr(r
st) is the inertia matrix, the vector Cr(rst, ṙst)

captures the Coriolis, centrifugal, and gravitational forces,
the vector Tr := [0, 0, 0, τst2 ]> gives the actuation torques,
the Jocabian matrices Jd and Jν(rst) transform ground reac-
tion force dst and body reaction force −νst into generalized
forces, respectively. Note that Jd is a constant matrix. In
addition, we have the kinematics constraint

p̈stf = Jdr̈
st +��̇Jdṙ

st = 0 (16)

imposed to fix the stance foot on the ground before lift-off.

III. CONTROL FRAMEWORK

This section illustrates the proposed MPC framework for
the planar five-link biped robot walking on flat ground.

A. Walking State Machine
A simple walking state machine is implemented for each

leg in order for proper transition between swing leg control
and stance leg control modes. Our locomotion strategy
utilizes a combination of alternating single support phase
(SSP, i.e., one stance leg in contact with the ground and one
swing leg) and double support phase (DSP, i.e., two stance
legs in contact with the ground). Assuming the information
of the entire robot can be accessed, the transition from the
swing state to the stance state is made simply when the leg
touch-down is detected; on the other hand, the transition from
the stance state to the swing state happens when the nominal
duration of DSP Tds runs out or the leg lift-off is detected
before the end of Tds.

B. Swing Leg Control
When the stance leg transitions to the swing state, swing

leg control mode is thus applied to move the leg from the
current footstep location pswf,n := [xswf,n, z

sw
f,n]> to the desired

next footstep location pswf,d := [xswf,d, z
sw
f,d]
>.

1) Footstep Decision: This desired footstep location pswf,d
is essentially responsible for determining the velocity that
the robot will travel at. In particular, it is projected onto an
assumed horizontal ground plane, i.e., zswf,n = zswf,d, based
on the current footstep location of the stance leg pstf,n :=

[xstf,n, z
st
f,n]>, similar to the technique used in [28], [29],

which gives in the x direction

xswf,d = xstf,n + vdTs + k1 (ẋc − vd) + k2 (ẋc − ẋ−1) , (17)

where pc := [xc, zc]
> is the robot CoM position, vd is

the desired robot forward velocity, ẋ−1 is the CoM touch-
down speed at the previous step, k1 and k2 are two positive
gains determining the contribution of each term, and Ts is
the nominal duration of stance phase, i.e., Ts = Tss + Tds
with Tss the nominal duration of SSP. To have a better
performance in terms of stabilization, e.g., overcoming ve-
locity perturbation against pushing, the desired next footstep
location is constantly updated after mid-swing.



2) Trajectory Generation: Cycloidal functions, with nice
properties including easy implementation, continuous deriva-
tives, and slow accelerations at the beginning and end [21],
are used to generate swing foot reference trajectory pswf,ref .

3) Operational Space Control: The Cartesian swing leg
reference trajectory is tracked using an operational space
formulation [30]. Specifically, it is a PD feedback controller
with a feedforward reference based on the swing leg dynam-
ics (13b), which gives the control law

τ swc = J>s Λ22

(
yff + yfb − J̇sθ̇sws

)
+C2, (19a)

yff = Hp̈swf,ref , (19b)

yfb = Kp

(Hpswf,ref−Hpswf )+Kd

(Hṗswf,ref−Hṗswf ), (19c)

where Kp and Kd are diagonal positive definite proportional
and derivative gain matrices. Note that the contribution of
the hip acceleration is assumed small under well-controlled
locomotion and thus the term M>

12p̈h is neglected here.
4) Reaction Force Prediction: At the beginning of each

MPC iteration, given the swing foot reference trajectory and
control law, we can then simulate the swing leg dynamics
and predict its resultant reaction force and moment on the
body using (7) and (13), which gives

f̂sw = Ĵ>s Λ̂12

(̂̇
Js
̂̇
θsws − yff

)
− Ĉ1, (20a)

m̂sw
y =

[
1 0

]
τ̂ swc , (20b)

τ̂ swc = Ĵ>s Λ̂22

(
yff + ŷfb − ̂̇Jŝ̇θsws )+ Ĉ2, (20c)

where the hat notation indicates the variables are simulation
results. Note that the hip acceleration terms are ignored
here as well. These approximations will be later taken into
consideration for stance leg control during SSP, which is
critical and necessary when the swing leg dynamics cannot
be neglected, nor simply treated as disturbances.

C. Stance Leg Control

The control of stance leg, either during SSP or DSP,
is formulated as a mathematical TO problem, in light of
the robot model and physical constraints. Starting from the
current state, the goal is to determine an optimal joint torque
control strategy over a finite time horizon while satisfying
the constraints on the states and controls, so as to guide
the robot body along the reference trajectory. Since we can
formulate this TO problem into a QP, which can be solved
efficiently, it can be implemented in an MPC fashion.

1) Decision Variables: Given the prediction horizon T ,
the total number of time steps N = 1+T/∆t, define the set
of decision variables

χ = {xN ,xk,νjk,d
j
k, τ

j
k , r̈

j
k | j = 1, 2,

k = 1, . . . , N − 1}, (21)

where the body states xk = [p>k , ṗ
>
k ]> from (5), the interac-

tion forces and moments νjk = [f jx,k, f
j
z,k,m

j
y,k]> from (6),

the ground reaction forces djk from (2), the actuation torques
τ jk = [τ j1,k, τ

j
2,k]> from (2), and the generalized accelerations

r̈jk from (15). This would be the most complete situation for

our MPC framework. Nevertheless, most of the time, many
decision variables turn out to be irrelevant:
(a) During SSP, it is clear that the decision variables related

to the swing leg sw can be removed, except for νswk and
τsw1,k , which will be explained later.

(b) During DSP, since we have a fixed nominal duration of
DSP Tds, we can actually take full advantage of MPC
essence, i.e., keeping future time slots in account so as
to act in advance. Specifically, supposing the stance leg
st = 1 is about to swing, given the remaining time
Tr ≤ T , the decision variables related to the stance leg
1 can be treated just like a swing leg as the previous
condition, but only after time step k = Nr := [Tr/∆t].
The effect is that the stance leg 1 would naturally push
off the ground before starting to swing, thus enhancing
the locomotion performance. Essentially, the stance leg 1
contributes to the body control during DSP but becomes
a burden afterwards during SSP, so the system is able to
take it into consideration and prepare ahead of time.

Note that other variables involved later, if not directly related
to the predefined body reference xref , are simply considered
constants throughout the entire prediction horizon T , which
are actually updated at the beginning of each MPC iteration.
The effect is that the robot model will always be correct for
the first time step, preventing it from divergence due to this
rough approximation.

2) Cost Function: For reference tracking, the very com-
mon quadratic function

J =

N∑
k=1

e>kQkek +

N−1∑
k=1


τ 1
k

τ 2
k

r̈1k
r̈2k


>

Rk


τ 1
k

τ 2
k

r̈1k
r̈2k

 (22)

is selected, where ek = xref,k − xk while Qk and Rk are
the weighting matrices. As a result, J will be minimized
in terms of overall tracking errors and control efforts in the
least-squares sense. In addition, the generalized accelerations
are also penalized to avoid aggressive leg motions.

3) Constraints: All the following constraints are linear in
terms of the decision variables (21).
(a) Initial Condition Constraint

The robot body states for the very first time step should
coincide with the current measurements:

x1 = x(tc). (23)

(b) Body Dynamics Constraint
The robot body states need to obey its system dynamics
(10) subject to the external wrench:

xk+1 = Adxk +Bd

2∑
j=1

νjk + gd. (24a)

Meanwhile, we also need to respect (7):

mj
y,k = τ j1,k. (24b)

Note that (24) are applied for leg j = 1, 2 with time step
k = 1, . . . , N − 1.



(c) Stance Leg Constraint
For stance leg st, the body reaction forces, joint torques,
and accelerations need to first satisfy the stance leg
dynamics (15):

Mrr̈
st
k +Cr = Tr,k + J>d d

st
k − J>ν νstk , (25a)

as well as the kinematics constraint (16):

Jdr̈
st
k = 0. (25b)

Meanwhile, the ground reaction forces need to be within
the friction cone to prevent slippage: 0 −1

1 −µ
−1 −µ

dstk ≤ 0, (25c)

where µ is the ground friction coefficient. Also, the joint
actuator cannot exceed its capability in terms of actuation
torque and velocity:

τmin ≤ τ stk ≤ τmax, (25d)

θ̇min ≤ J−1b ṗk ≤ θ̇max, (25e)

where Jb(θstb ) is the body Jacobian matrix, i.e., Jbθ̇stb =
ṗ, θstb := [θsta , θ

st
2 , θ

st
1 ]>. This Jacobian matrix is in-

vertible as long as the stance leg configuration is non-
singular. Lastly, since the stance ankle is limp, i.e., zero
joint actuation torque, the interaction forces between the
body and stance leg are limited by[

0 0 1 0
]
J>ν ν

st
k = 0. (25f)

Note that (25a-f) are applied for stance leg st = 1 with
time step k = 1, . . . , Nr if stance leg 1 is about to swing
after Nr, while for the other stance leg st = 2 with time
step k = 1, . . . , N −1. In addition, for stance leg 1 with
time step k = Nr+1, . . . , N−1, it will become a burden
to the body and the leg reaction forces are set to

ν1
k =

[
0 (mf +ms) g 0

]>
(25g)

in consideration of the leg weight only, but good enough
for the system to act in advance.

(d) Swing Leg Constraint
The previous stance leg constraint needs to be applied
either during SSP or DSP. In particular, during SSP, the
decision variables related to the swing leg sw can be
removed except for τsw1,k subject to (24b) and the swing
leg reaction forces, which can be predicted based on the
simulation results from (20):

νswk =

[ (
f̂swk

)>
m̂sw
y,k

]>
. (26)

Note that (26) is applied for swing leg sw with time step
k = 1, . . . , N − 1.

D. Summary

The central idea of the proposed MPC framework is to
regulate the body motion via real-time TO, which can be
formulated into a QP, with stance leg reaction forces as
control inputs while swing leg reaction forces as forced
inputs. The stance leg reaction forces need to respect its leg
dynamics, actuator capability, and terrain condition, whereas
the swing leg reaction forces can be predicted based on the
leg dynamics, swing trajectory, and control law.

IV. SIMULATION RESULTS

The proposed MPC framework was implemented on the
planar five-link biped robot introduced in Section II, simu-
lated using MATLAB’s ode45 function, with g = 9.81 m/s2

and µ = 0.8. The swing leg reaction force prediction (20)
was carried out based on forward Euler method. The QP for
the stance leg MPC was solved using MATLAB’s quadprog
function at a fixed frequency of 100 Hz. The optimal joint
torque solution of the first time step is used directly on the
robot. Different experiments were tested to evaluate the MPC
performance, demonstrated in the video attachment.

A. Static Standing & Body Reference Tracking

Without considering SSP, the robot is able to stand still
by tracking a constant body reference trajectory with one
foot on each side of the CoM, thus called static standing.
Note that the robot would be guaranteed stable as long as
the friction cone constraint (25c) was satisfied [8]. To go
further, we demonstrated in Fig. 2a that the proposed MPC
framework can also be applied in the field of manipulators.
Starting with static standing, the robot body was commanded
to track sinusoidal references xref := [pref , ṗref ]> with
pref (t) = [cx + r sin (wt) , cz + r cos (wt) , A sin (wt)]

>
,

where the angular frequency w = 2π/3 rad/s, the radius
r = 0.08 m, the center [cx, cz]

> = [0, 1.27]> m, and the
pitch amplitude A = 0.1 rad = 18/π deg. With larger
weights penalizing position tracking errors, the robot body
was able to tack the sinusoidal references pretty well.

B. Effect of Swing Preparation & Swing Force Prediction

As previously mentioned, there are two main points wor-
thy of attention in our MPC framework, i.e., swing prepa-
ration during DSP and swing leg reaction force prediction
during SSP. With the former, the system is able to act in
advance before a stance leg starts to swing; with the latter,
the system is able to compensate the burden of swing leg
dynamics. To evaluate their effects, we compared the results
with and without involving (25g) and (26) in the QP, as
shown in Fig. 2b. Starting with static standing (slightly off
the equilibrium), the robot was commanded to lift its left foot
off the ground for a small portion and then get back, with
the swing foot reference trajectory in blue. The simulation
results indicate that the swing force prediction significantly
improves body control, while swing preparation, though not
as much as the former, still helps a lot. Notably, with swing
preparation on, the stance leg naturally pushed off the ground
before starting to swing and the body moved upward a little
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Fig. 2. Simulation results. (a) Static standing and body reference tracking. The top left shows the screenshots at initial (light gray) and two random
instants (dark gray and black), with the body reference in blue. The top right compares the body reference and actual trajectories. The bottom shows the
time histories of the body position and pitch angle. (b) Effect of swing preparation and swing leg reaction force prediction. The right compares the body
trajectories. The top left shows the screenshots at initial (light gray), mid-swing (dark gray), and touch-down (black) with both on. The bottom left shows
the screenshots with both off. (c) Dynamic standing and push recovery. The top shows the screenshots right before each push (dark gray) and right after
finishing two steps (black). The arrow indicates direction and magnitude of each push. The bottom shows the time histories of the robot CoM forward
velocity and body pitch angle. (d) Velocity tracking on flat ground. The figure compares the robot reference and actual CoM forward velocities as well as
body pitch angles. (e) Blind locomotion on rough ground. The top shows the screenshots on rough ground at random instants. The rest compare the robot
reference and actual CoM forward velocities, body heights, and body pitch angles on both flat and rough grounds.

bit accordingly. As a result, the body trajectory ended up
with an overall smaller deviation from the starting point.

C. Dynamic Standing & Push Recovery
For static standing, the robot is always standing still in

DSP. Via alternating DSP and SSP, the robot is also able to
hold position by stepping in place with vd = 0 m/s, called
dynamic standing. As seen in Fig. 2c, starting with static
standing and then commanded to switch to dynamic standing,
the robot was able to keep its balance by adjusting its footstep
locations, and quickly converge to the steady state. Later, to
gauge the overall system robustness in terms of disturbance
rejection, a push recovery test was conducted. Specifically,
an external force of 120 N was applied to the body for 100
ms in the positive X direction at t = 5 s and another one with
the same magnitude in the negative X direction at t = 10 s.
The push was forceful enough to immediately accelerate the
robot CoM over 0.15 m/s, but the robot was able to recover
within the following 2 s. Finally, a continuous external force
of 20 N was exerted on the body in the positive X direction
right after t = 15 s and the robot was still able to adapt to
it by moving the footstep locations ahead of robot CoM, so
that the centroidal angular momentum was not evolving.

D. Velocity Tracking on Flat Ground
As aforementioned, velocity tracking with varying vd is

done mainly through footstep placement (17). As seen in
Fig. 2d, on flat ground, starting with static standing, the robot
was initially switched to dynamic standing, and then it was
commanded to track velocity reference by increment of 0.4
m/s up to 1.2 m/s, until it was ramped back down to 0 m/s.
With a smooth change in commanded velocity, the robot was
able to track the reference well. It is interesting to observe
that the body naturally bent in the moving direction even with
a zero reference against ground friction. Furthermore, for
constant vd on flat ground, the system showed convergence
to some limit cycle attractor, while it became more and
more chaotic when it was reaching the limit, i.e., maximum
feasible forward velocity around 1.2 m/s.

E. Blind Locomotion on Rough Ground

Finally, to demonstrate the overall system robustness in
terms of terrain rough condition, the robot was tested on
irregular ground without any perception information. As seen
in Fig. 2e, starting with static standing on flat ground, the
robot was immediately commanded to speed up to 0.2 m/s
in 2 s. Later, it succeeded in first climbing up a slope of
20 deg, then walking over an uneven terrain with ground
height rapidly changing, and afterwards going downhill with
a slope of −20 deg, before walking on flat ground again.
Note that in order to adapt to the ground height difference,
the apex height for the swing foot trajectory was intentionally
increased; the body height was intentionally lowered to avoid
leg singularity; swing foot collision was not considered here;
if the swing foot was still in the air after 1.1Tss in case of
unexpected gaps, it was simply commanded to step down as
fast as possible.

V. CONCLUSION

The descriptiveness of the robot dynamic model being
used in a model predictive control (MPC) framework in-
evitably affects the overall system performance. Instead of
the full-body dynamics which remains computationally ex-
pensive, or the empirically simplified model which limits the
capability, we interpret the robot dynamics from a different
perspective. By decomposing a legged robot into the body
and the legs, with interaction forces and moments connecting
them, we enjoy a novel method called Dynamic Model
Decomposition that involves lower-dimensional dynamics for
each subsystem while their composition maintaining the
equivalence to the original full-order model. Based on that,
we further designed a corresponding MPC framework, which
considers linearly approximated body dynamics with con-
strained leg reaction forces as inputs. The proposed method-
ology was successfully applied to the dynamic locomotion
of a planar five-link biped robot. We are looking forward
to generalizing it to three-dimensional scenarios as well as
applying it to different kinds and applications of robots.
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